根号3=3^(1/2) , 3次根号9=9^(1/3)=(3^2)^(1/3)=3^(2/3) , 6次根号3=3^(1/6)
原式=3^[(1/2)+(2/3)-(1/6)] = 3^1 =3
根号3 × 3次根号9 ÷ 6次根号3
=3^(1/2)* 9^(1/3) ÷3^(1/6)
= 3^(1/2)* (3^2)^(1/3) * 3^(-1/6)
= 3^(1/2)* 3^(2/3) * 3^(-1/6)
=3^(1/2+2/3-1/6)
=3^1
=3
根据幂指数的运算性质
原式=(3的1/2次方*3的2/3次方)/(3的1/6次方)=3的(1/2+2/3-1/6)次方=3的一次方=3