对x求导是ycos(xy).对y求导是xcos(xy)
解: cos²(xy),可以看做是复合函数: f(g)=g²,g(φ)=cos(φ),φ(x)=xy f'(x)=[f'(g)][g'(φ)][φ'(x)] 因此: d[cos²(xy)]/dx=[2cos(xy)][cos'(xy)][(xy)'] =[2cos(xy)][-sin(xy)](y) =-2ycos(xy)sin(xy) =-ysin(2xy) 同样的,有:...