函数是数学名词,代数式中,凡相关的两数X与Y,对于每个X值,都只有一个Y的对应值。这种对应关系就表示Y是X的函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量。
函数就是在某变化过程中有两个变量X和Y,变量Y随着变量X一起变化,而且依赖于X.如果变量X取某个特定的值,Y依确定的关系取相应的值,那么称Y是X的函数.这一要领是由法国数学家黎曼在19世纪提出来的,但是最早产生于德国的数学家菜布尼茨.他和牛顿是微积分的发明者.17世纪末,在他的文章中,首先使用了“function"一词.翻译成汉语的意思就是“函数.不过,它和我们今天使用的函数一词的内涵并不一样,它表示”幂”、“坐标”、“切线长”等概念.
直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系.后来瑞士的数学家欧拉又把函数的定义作了进一步的规范,他认为函数是能描画出的一条曲线.我们常见到的一次函数的图像、二次函数的图像、正比例函数的图像、反比例的图像等都是用图像法表示函数关系的.如果用达朗贝尔和欧拉的方法来表达函数关系,各自有它们的优点,但是如果作为函数的定义,还有欠缺.因为这两种方法都还停留在表面现象上,而没有提示出函数的本质来.
19世纪中期,法国数学家黎紧吸收了莱布尼茨、达朗贝尔和欧拉的成果,第一次准确地提出了函数的定义:如果某一个量依赖于另一个量,使后一个量变化时,前一个量也随着变化,那么就把前一个量叫做后一个量的函数.黎曼定义的最大特点在于它突出了就是之间的依赖、变化的关系,反映了函数概念的本质属性.