1⼀1+1⼀2+1⼀3+1⼀n=? ....有公式来解答吗???

2025-12-15 05:08:25
推荐回答(4个)
回答1:

没有固定公式来解答,解答方法如下:开始我们先设原式为:

A=1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10+1/11+1/12+1/13+1/13+……

然后再设另一式为:

B=1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+(1/16+1/16+1/16+1/16+1/16+…….. 所以A >B ……….. a

=>B= 1+1/2+1/4×2+1/8×4+1/16×8+1/32×16+1/64×32+1/128×64+…………

=1+1/2+1/2+1/2+1/2+1/2+1/2+1/2+………..

由上是得知B为发散级数 …….. b

由a,b两个条件 ∴ A为发散级数,从而无限大。

回答2:

应该是:没有固定公式来解答,解答方法如下:开始我们先设原式为:

A=1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10+1/11+1/12+1/13+1/13+……

然后再设另一式为:

B=1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+(1/16+1/16+1/16+1/16+1/16+…….. 所以A >B ……….. a

=>B= 1+1/2+1/4×2+1/8×4+1/16×8+1/32×16+1/64×32+1/128×64+…………

=1+1/2+1/2+1/2+1/2+1/2+1/2+1/2+………..

由上是得知B为发散级数 …….. b

由a,b两个条件 ∴ A为发散级数,从而无限大。

回答3:

没有固定公式来解答,解答方法如下:开始我们先设原式为:

A=1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10+1/11+1/12+1/13+1/13+……

然后再设另一式为:

B=1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+(1/16+1/16+1/16+1/16+1/16+…….. 所以A >B ……….. a

=>B= 1+1/2+1/4×2+1/8×4+1/16×8+1/32×16+1/64×32+1/128×64+…………

=1+1/2+1/2+1/2+1/2+1/2+1/2+1/2+………..

由上是得知B为发散级数 …….. b

由a,b两个条件 ∴ A为发散级数,从而无限

回答4:

1