注:m^2=m*m,m^4=m*m*m*m
(m+n)(m+n)=m^2+n^2+2mn=7
(m-n)(m-n)=m^2+n^2-2mn=3
两式相加,得m^2+n^2=5
两式相减,得mn=1
m^4+n^4
=(m^2+n^2)^2-2(mn)^2
=25-2
=23
(m+n)^2=m^2+2mn+n^2=7
(m-n)^2=m^2-2mn+n^2=3
m^2+n^2=5
mn=1
m^4+n^4
=(m^2+n^2)^2-2(mn)^2
=25-2
=23
21
由原式可知:
m^2+2mn+n^2=7
m^2-2mn+n^2=3
故2m^2+2n^2=10,m^2+n^2=5
且4mn=4
mn=1
m^4+n^4=(m^2+n^2)^2-2m^2n^2=25-2*1=23
(m+n)(m+n)=7(1)
(m-n)(m-n)=3(2)
展开(1)(2),(1)-(2) mn=1 m^2+n^2=5
m*m*m*m+n*n*n*n=m^4+n^4=(m^2+m^2)^2-2m^2n^2=5^2-2*1^2=23
23