(1)∵数列{an}的前n项和Sn=2n2+2n,∴a1=S1=4,
当n≥2时,an=Sn-Sn-1=(2n2+2n)-[2(n-1)2+2(n-1)]=4n,
∵n=1时也成立,
∴an=4n;
又当≥2时,bn=Tn-Tn-1=(2-bn)-(2-bn-1),
∴2bn=bn-1,
∴数列{bn}是等比数列,其首项为1,公比为
,1 2
∴bn=(
)n?1.1 2
(2)Cn=anbn=
.4n 2n?1
∴An=4(
+1 20
+2 2
+…+3 22
),①?n 2n?1
An=4(1 2
+1 2
+2 22
+…+3 23
),?②n 2n
①-②得
An=4(1 2
+1 20
+1 2
+…+1 22
?1 2n
)n 2n
=4(2-
).n+2 2n
∴An=8(2?
)=16-n+2 2n
.n+2 2n?3