解:y=2x+√(x-1),则其定义域为x≥1;y'=[4√(x-1)+1]/[2√(x-1)]∴y'>0∴y=2x+√(x-1)是单调增函数;∴当x=1时,y最小值=2
y=2x+(x-1)^(1/2)在定义域[1,+∞)是增函数所以当x=1时有最小值y=2