在三角形ABC中,若sinB⼀2=sinA⼀2*sinC⼀2,求证a+c=3b

2025-12-14 17:45:49
推荐回答(1个)
回答1:

我帮你吧!

要证a+c=3b,即转化为证sinA+sinC=3sinB.(正弦定理)
sinB/2=sinA/2*sinC/2
∴cos(A/2+C/2)=sinA/2*sinC/2
cosA/2*cosC/2-sinA/2*sinC/2=sinA/2*sinC/2
∴cosA/2*cosC/2=2sinA/2*sinC/2......①

由sinA+sinC
=2sin(A+C)/2*cos(A-C)/2
=2cosB/2*cos(A-C)/2
=2cosB/2*(cosA/2*cosC/2+sinA/2*sinC/2)把①带入
=2cosB/2*3sinA/2sinC/2 ....把sinB/2=sinA/2*sinC/2带入
=6cosB/2*sinB/2
=3sinB
即a+c=3b得证。